
Object-Focused Edge Detection

Scott Lee∗

UC Berkeley
scott.lee.3898@berkeley.edu

Alan Rosenthal∗

UC Berkeley
amrosenthal@berkeley.edu

Abstract

We describe a general method for altering general al-
gorithms for edge detection in order to produce edge map-
pings that focus on one or few individual objects in an im-
age. We leverage Class Activation Mappings (CAMs) [13]
to infer the important parts of an image and emphasize the
edges of the detected objects. Since the general framework
allows one to use any pre-trained network for object detec-
tion and CAM generation, and works for any edge detec-
tion algorithm with a set of intermediate edges (e.g. Canny,
HED), our method is highly robust and flexible. When given
an image with one or few objects, our method results in
higher quality edge mappings that highlight edges from ob-
jects present in the image, and de-emphasize edges that are
part of the background (i.e. not part of an object).

1. Introduction
Edge detection is a fundamental problem in computer

vision, with applications in object detection, 3-D recon-
struction, autonomous vehicles, medical analysis, and nu-
merous other fields. As such, it is a widely explored field,
and there exist many edge detection algorithms for images;
some popular ones include more traditional methods, such
as the Canny edge detector [3], and more modern neural-
net driven approaches, such as the Holistically-Nested edge
detector (HED) [12].

While these methods are usually successful at detecting
boundary edges, they often include unnecessary or undesir-
able edges from the background of an image. Moreover,
such algorithms can neglect critical details about the object
of focus, such as facial details and individual body parts.

In this paper, we propose a general framework for modi-
fying existing edge detection algorithms in order to make
them more suitable for producing better object-focused
edges—enhancing edges that add important details and re-
ducing edges that are not part of the main subject—in order
to augment the boundary edges produced by the original
algorithm. In order to do so, we employ Class Activation
Mappings (CAMs) [13] to reweight an intermediate set of

Figure 1. Above: Good object-focused edges. Below: Edges in-
clude too much background and not enough facial detail.

edges that are used in some edge detection algorithm. Intu-
itively, CAMs provide a sense of how ”important” a certain
pixel is when classifying an object present in the image.
Therefore, we can use CAMs to emphasize edges that are
part of an object and reducing edges that are instead part of
the background of an image, resulting in an edge mapping
that focuses on objects contained in the image.

1.1. Related Work

Edge detection has its roots in early computational meth-
ods, such as the Sobel filter [7], the famous Canny edge de-
tector [3], and zero-crossing feature methods [2]. Another
set of edge detection methods relies on using statistics, in-
ference, and information theory, such as the work of Martin
et al. [9] and Statistical Edge Detection [8].

With the rise of neural nets, we have seen numer-
ous diverse approaches at solving the classic problem,

1



Figure 2. Class activation mappings corresponding to top 10 predicted classes of an image, with predicted class probabilities.

such as Boosted Edge Learning [4] and Structured Forests
[5]. Finally, Convolutional Neural Nets (CNNs) have
played a major role in recent computer vision develop-
ments, including edge detection. Some notable exam-
ples include DeepEdge [1], DeepContour [10], and Cost-
Sensitive CNNs [6].

1.2. Class Activation Mappings

We leverage Class Activation Mappings (CAMs) [13] to
indicate for which parts of an image are more relevant for
classifying the content of the image. This method uses a
CNN with a Global Average Pooling (GAP) final layer that
gives the inputs for softmax to generate class probabilities.

Given an input image, let (x, y) be a spatial location in
the image and let fk(x, y) denote the activation of unit k
in the last convolutional layer. Let Fk =

∑
x,y fk(x, y)

denote the output of GAP on unit k. For each output class
c, let wc

k be the weight of the linear mapping from unit k
in the GAP layer to class c in the softmax input. Then the
softmax input is

∑
k w

c
kFk. Let the class activation map for

class c be denoted Mc. For a spatial location (x, y), we have
Mc(x, y) =

∑
k w

c
kfk(x, y). That is, the activation map for

class c is the sum of the last convolution unit activations fk,
weighted by the “importances” wc

k of units k for class c.

2. CAM-Weighted Edges

2.1. Core Algorithm

Our approach complements existing algorithms for edge
detection. In this paper, we implement our modification on
the Canny edge detector [3] and Holistically-Nested Edge
Detection (HED) [12] algorithm with non-maximum sup-
pression.

Using one CAM. Given an input image, the first step of
our method is to feed the image into a CNN image classi-
fier and obtain the the CAM corresponding to the highest-
probability predicted class. Our implementation uses a
DenseNet-161 trained on the ImageNet dataset. A vanilla
edge detection algorithm, such as Canny or HED, is run
on the input image up to an intermediate stage. An appro-
priate intermediate stage is one where the edges are rep-
resented in a “fuzzy” form with variation in intensity, thus
capturing more information from the original image, before
any thinning and non-maximum suppression is applied. For
Canny, we use the gradient intensity representation of the
image that is obtained after Gaussian blurring. For HED,
we use the output of the algorithm before non-maximum
suppression is applied. The CAM is upsampled if neces-
sary to match the dimensions of the intermediate edge out-
put, then the two are multiplied pixel-wise. The weighted
edges outputted by this step have higher intensity in the
regions where the classifier has highest activation, corre-
sponding to discriminative features for the objects in the

2



Figure 3. Diagram of intermediate steps, using the Canny edge detector as the base algorithm for modification.

image. The vanilla edge detection algorithm is resumed, us-
ing the weighted edges as input, to produce the final thinned
and non-maximum suppressed edges.

Using multiple CAMs. The single CAM correspond-
ing to the top predicted class tends to have high activation
in only small parts of the image. While weighting with
a single CAM produces high detail in these discriminative
regions, it generally fails at capturing entire objects. To
rectify this, multiple CAMs corresponding to the top k pre-
dicted classes may be combined to form an aggregate ac-
tivation map covering more of the relevant objects, which
is then multiplied with the intermediate edges pixel-wise as
in the single-CAM case. The top k predicted classes’ acti-
vation maps tend to focus on different parts of the image,
but generally within the same prominent objects. Thus, a
combination of these CAMs usually yields better coverage
than a single one.

2.2. Tunable parameters

We will discuss several methods for combining the top k
CAMs into one aggregate map. These may be used in con-
junction with one another. Let M1, . . . ,Mk be the CAMs
for the top 1, . . . , k predicted classes. Let their predicted
probabilities be p1 ≥ · · · ≥ pk. For a spatial location
(x, y), the activation for class c at that location is denoted
Mc(x, y).

Mean. We take the pixel-wise mean across the top k

classes, so Mmean(x, y) =
1
k

∑k
c=1 Mc(x, y). This opera-

tion “blends” the different CAMs in a straightforward way,
but is less effective in cases where many of the CAMs are
very similar and only a few focus on different areas of an
object.

Max. We take the pixel-wise maximum across the top k
classes, so Mmax(x, y) = max{Mc(x, y) | c = 1, . . . , k}.

Figure 4. Different functions for aggregating the CAMs from Fig-
ure 2.

This method performs well at capturing the relevant object,
since a pixel location receives a high weight if any CAM
has high activation there. Conversely, it is sensitive to erro-

3



Figure 5. Results. Top row: original images. Middle row: Unmodified edge detector algorithm output. Bottom row: Modified output. For
both HED and Canny, modified output includes less background clutter and at least as much detail within relevant objects compared to
original output.

neous classification.
Under the reasonable assumption that high-activation

regions of higher-probability classes are less likely erro-
neously focus on unrelated parts of the image, the class
probabilities should be incorporated into the aggregate ac-
tivation map. The following strategies address this issue.

Probability weights. Instead of applying a function
like mean or max on the raw pixel values Mc(x, y) of
the CAMs, apply it on weighted pixel values wcMc(x, y).
These weights can be a monotonic function of the probabil-
ities wc = f(pc). If f is the identity, so the weights are the
probabilities themselves, this scheme can often reduce the
benefit of using multiple CAMs since the top class proba-
bility is frequently much larger than the rest.

Probability threshold. Instead of using the top k
classes, use only the subset whose probabilities exceed
some specified threshold. This prevents highly unlikely
predictions from having undue influence on the final ag-
gregated activation map.

For our results, we used the average of thresholded mean
(with probability threshold = 0.0005) and max, with k = 10
classes.

Dilation. Dilation is another strategy to address the is-
sue of CAMs not capturing enough of the image. For each

iteration of dilation, each pixel location in the CAM is up-
dated to the max value of its neighbors in a circular region
around it. This technique can be applied to a single CAM
or to the result of aggregating multiple CAMs as described
previously. In some cases, when the activation region is fo-
cused only on the interior of an object, dilation produces a
better activation map by “expanding” the high-weight area
to include the whole object. In most cases, the aggregated
CAM is sufficiently able to capture the entire object, and di-
lation causes background noise to be weighted highly near
the border of the object; an negative example of how di-
lating the CAM includes unwanted background elements is
seen in Figure 5. Because of this, we did not include dila-
tion in our final results.

3. Results

We perform our algorithm using the Canny edge detector
and the Holistically-Nested edge detector (HED). Our ex-
periments involved trying different numbers of top-k class
predictions (k = 1, 5, 10), using different functions of gen-
erated Class Activation Maps (min, max, average, combi-
nation, etc), and adjusting probability weights and cutoffs.
Using a DenseNet pretrained on ImageNet as the CAM-

4



Figure 6. Left, no dilation; right, with dilation. While dilation cap-
tures more of the object boundary, it includes undesirable back-
ground regions.

generator backbone of our algorithm, we applied the CAM-
weighted edge detector to images from a variety of datasets:
Fruits360, Dogs vs. Cats, and ImageNet.

As illustrated in Figure 6, our edge detection algorithm
produces edge mappings that capture details that are not
present in the outputs of the base edge detection algorithms
we use, such as fine details on the cat’s and dog’s noses and
ears. Moreover, our method greatly reduces the amount of
noise present in the output, yielding a much cleaner edge
mapping that allows one to see more details.

Limitations. Because our algorithm depends on CAMs
to determine which edges should be emphasized, it is crit-
ical that the weighted CAM used in reweighting edges is
accurate. In images that do not have a specific focus, or
in images that have numerous objects, such as the scenery
photo present in Figure [TODO], we see that our algorithm
does not provide meaningful improvements over the origi-
nal edge detection algorithms. This is due to the fact that
the top-k prediction CAMs cover most of the image, result-
ing in a near-uniform distribution of weights that has a very
minute effect on the edges when they are reweighted.

Another more serious, but much rarer issue, is when the
CAM prediction fails altogether. For the image of a cat
in a box (Figure [TODO]), the DenseNet backbone used
in CAM-generation gave completely incorrect top-k pre-
dictions (carton, cradle, binder, envelope, crate) because it
detected the wrong object. As a result, our algorithm em-
phasized the edges of the wrong object, and the output is
in fact worse than the results of the original edge detection
algorithms.

4. Future Work

There are two major areas for future development and
improvements to our presented algorithm.

Improving CAM Quality. Currently, our algorithm
uses Class Activation Maps generated from a single it-
eration of classification (i.e. we feed our image to the

Figure 7. For the landscape images and cat images: top-left is
image, top-right is original edge detector output, bottom-left is
CAM, bottom-right is modified output. The CAM for the land-
scape is not very localized, so the modified algorithm fails to im-
prove on the original significantly. For the cat, the classifier mis-
labeled the image as a box/carton.

CAM-generating backbone once, and use the top-k class
CAMs to reweight edges). As we saw in previous exam-
ples (Figures 2, 4, 5), the resulting CAMs (and functions of
CAMs) often cover the object of interest with an ambigu-
ous circular filter, not binding tightly to the defining border
of the object. One reasonable method to combat this is-
sue is to hide random patches of the image when training
the CAM-generating backbone so that the learner is forced
to learn more robust representations for object recognition
[11]. This ”Hide and Seek” method results in CAMs that
touch multiple parts of the object instead of a single-center
mapping, which yields a CAM that better approximates the
boundary of the object, as we see in Figure 8. Furthermore,
this augmentation only requires one to generate more sam-
ples from existing data, and requires no change to the inner

5



workings of the edge detection algorithm at all.

Figure 8. A classifier trained with the Hide-and-Seek (HaS)
methodology [11] can produce CAMs that focus on a larger part
of the object than a regular classifier.

Using segmentation. A possible evolution of

References
[1] G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-

scale bifurcated deep network for top-down contour detec-
tion. CoRR, abs/1412.1123, 2014.

[2] S. Bhardwaj and A. Mittal. A survey on various edge detec-
tor techniques. Procedia Technology, 4:220226, 12 2012.

[3] J. Canny. A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell., 1986.

[4] P. Dollár, Z. Tu, and S. Belongie. Supervised learning of
edges and object boundaries. June 2006.

[5] P. Dollár and C. L. Zitnick. Fast edge detection using struc-
tured forests. PAMI, 2015.

[6] J.-J. Hwang and T.-L. Liu. Pixel-wise deep learning for con-
tour detection. 04 2015.

[7] J. Kittler. On the accuracy of the sobel edge detector. Image
and Vision Computing, 1(1):37 – 42, 1983.

[8] S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Sta-
tistical edge detection: Learning and evaluating edge cues.
IEEE Trans. Pattern Anal. Mach. Intell., 25(1), Jan. 2003.

[9] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect
natural image boundaries using local brightness, color, and
texture cues. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(5):530–549, May 2004.

[10] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deep-
contour: A deep convolutional feature learned by positive-
sharing loss for contour detection. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2015.

[11] K. K. Singh, H. Yu, A. Sarmasi, G. Pradeep, and Y. J. Lee.
Hide-and-seek: A data augmentation technique for weakly-
supervised localization and beyond. 2018.

[12] S. ”Xie and Z. Tu. Holistically-nested edge detection. In
Proceedings of IEEE International Conference on Computer
Vision, 2015.

[13] B. Zhou, A. Khosla, L. A., A. Oliva, and A. Torralba. Learn-
ing Deep Features for Discriminative Localization. CVPR,
2016.

6


